Tintagel Primary School Written Calculation Policy - Updated February 2022

ADDITION:

	CONCRETE	PICTORIAL	ABSTRACT	MENTAL RECALL	KEY VOCABULARY													
Reception Addition as 'combining 2 groups'	EYFS Framework 2021 ELG: -Have a deep understanding of number to 10, including the composition of each number -Subitise (recognise quantities without counting) up to 5 -Automatically recall (without reference to rhymes, counting or other aids) number bonds up to 5 (including subtraction facts) and some number bonds to 10 , including double facts -Verbally count beyond 20, recognising the pattern of the counting system -Compare quantities up to 10 in different contexts, recognising when one quantity is greater than, less than or the same as the other quantity` -Explore and represent patterns within numbers up to 10, including evens and odds, double facts and how quantities can be distributed equally																	
	Combining two parts to make a whole (use other resources too eg, eggs, shells, teddy bears, cars).	$\begin{aligned} & \text { Might be } \\ & \text { recorded } \\ & \text { as: } \\ & 2+3=5 \end{aligned}$	8 people are on the bus. 5 more get on at the next stop. How many people are on the bus now? \|												 [Might be recorded as: $8+5=13$] Use of Numicon to support simple number sentences	Recording their own number sentences with the correct symbols e.g. $5+2=7$ OR $7=5$ $+2$ (This can be done in a number of ways - chalk outside, moving number tiles to make number sentences etc)	1 more (up to 20) Counting up to 20 Number Bonds	add, more, make, sum, total, altogether, double, one more, two more . . . ten more, how many more to make...? how many more is . . .than . . .? how much more is . . .?
:---:	:---:	:---:	:---:	:---:	:---:	:---:												
Year 1	Curriculum 2014 Statutory Requirements																	
	Pupils should be taught to:																	
Addition as	-Read, write and interpret mathematical statements involving addition (+) and equals (=) signs																	
'counting on'	-Represent and use number bonds and related subtraction facts within 20																	
$\square+\square$ (bridging	-Add one-digit and two-digit numbers to 20, including zero																	
10) $\square \square+\square$ (bridging 20)	-Solve one-step problems that involve addition, using concrete objects and pictorial representations, and missing number problems such as					blems such as												
	Counting on using number lines using cubes or Numicor	Children to represent the cubes using dots or crosses. They could put each part on a part whole model too. Number line - jumps of 1 (modelled using bead strings) $18+5=23$ 	The abstract number line: What is 2 more than 4 ? What is the sum of 2 and 4 ? What is the total of 4 and 2 ? $4+2$ $4+3=7$ Four is a part, 3 is a part and the whole is seven. No number line $\begin{aligned} & 18+5 \\ & 18+2=20 \\ & 20+3=23 \end{aligned}$	Pairs to 20 Facts up to 20 1 / 10 more than a number Derive related facts	number bonds, number line, add, more, plus, make, sum, total, altogether, inverse, double, near double, equals, is the same as (including equals sign) How many more to make..? How many more is...than..? How much more is.?													
:---:	:---:	:---:	:---:	:---:	:---:													
Year 2 $\square \square+\square \square$ (bridging 10s)	Curriculum 2014 Statutory Requirem Pupils should be taught to: -Solve problems with addition: -Using concrete objects and pictorial -Applying their increasing knowledge -Recall and use addition facts to 20 fl -Add numbers using concrete objects, and tens, two two-digit numbers, ad -Show that addition of two numbers -Recognise and use the inverse relation problems	ments representations, including those of mental and written methods uently, and derive and use relate , pictorial representations, and m ding three one-digit numbers can be done in any order (commu onship between addition and sub	olving numbers, quantities a acts up to 100 tally, including: a two-digit n tive) ction and use this to check ca	asures r and ones, a tw tions and solve	digit number ssing number													
(20	TO + O and TO + TO using base 10 and																	
:---																		
place value counters - continue to																		
develop understanding of partitioning																		
and place value																		

Year 5 ロロロロ＋ロロロロ （and beyond） Decimals up to 2dp（23．7＋ 48．56）	Curriculum 2014 Statutory Requirements Pupils should be taught to： －Add whole numbers with more than 4 digits，including using formal written methods（columnar addition） －Add numbers mentally with increasingly large numbers －Use rounding to check answers to calculations and determine，in the context of a problem，levels of accuracy －Solve addition multi－step problems in contexts，deciding which operations and methods to use and why				
	As previous year groups－using place value counters，Base 10， Numicon as necessary	As previous year groups－use part part whole models，bar models as necessary Expanded vertical	Compact vertical $\begin{array}{r} 23.70 \\ +48.56 \\ \hline 72.26 \\ \hline 11 \end{array}$	（derive）Bonds up to 1 （2dp） （derive）Bonds up to 10 （1dp）	All of the above ＋efficient written method
Year 6 Consolidate／ extend $Y 5$ including： Three numbers Decimals up to 3dp（context： measures）	Curriculum 2014 Statutory Requirements Pupils should be taught to： －Solve addition multi－step problems in contexts，deciding which operations and methods to use and why				
	As previous year groups - using place value counters, Base 10, Numicon as necessary	As above	As above	All of the above + order of operations	
:---	:---	:---	:---	:---	

SUBTRACTION:

	CONCRETE	PICTORIAL	ABSTRACT	MENTAL RECALL	KEY VOCABULARY
Reception Subtraction as 'taking away' from a group	EYFS Framework 2021				
	ELG:				
	-Have a deep understanding of number to 10 , including the composition of each number				
	-Subitise (recognise quantities without counting) up to 5				
	-Automatically recall (without reference to rhymes, counting or other aids) number bonds up to 5 (including subtraction facts) and some number bonds to 10 , including double facts				-Compare quantities up to 10 in different contexts, recognising when one quantity is greater than, less than or the same as the other quantity`
		Symbols Mum baked 9 biscuits. I ate 5. How many were left? Might be recorded as: $9-5=4$	Recording their own number sentences with the correct symbols e.g. $6-4=2$ OR 2 $=6-4$ (This can be done in a number of ways - chalk outside, moving number tiles to make number sentences etc)	1 less (numbers up to 20)	take away, how
					many are left/left over?
					how many have gone? one less,
	Physically taking away and removing objects from a whole (ten frames, Numicon, cubes and other items such as beanbags could be used).				two less, ten less ... how
	00				many fewer is ... than ...? how
					much less is ...?
					difference
					between
Year 1 Subtraction as 'taking away' and 'difference' (by counting	Curriculum 2014 Statutory Requirements Pupils should be taught to: -Read, write and interpret mathematical statements involving subtraction (-) and equals (=) signs -Represent and use number bonds and related subtraction facts within 20 -Subtract one-digit and two-digit numbers to 20, including zero -Solve one-step problems that involve subtraction, using concrete objects and pictorial representations, and missing number problems such as $9=\ldots-7$				
:---:	:---:	:---:	:---:	:---:	:---:
	Counting back (using number lines or number tracks) children start with 6 and count back 2 $6-2=4$	Children to draw the concrete resources they are using and cross out the correct amount. The bar model can also be used.	$4-3=$	Subtraction facts to 10 1 / 10 less than a number	half, halve, equals, is the same as (including equals sign) difference between, how many more to make..? how many more is...than..? how much more is..?
Year 2 Subtraction as inverse of addition 믐 - (bridging 10s)	Curriculum 2014 Statutory Requirements Pupils should be taught to: -Solve problems with subtraction: using concrete objects and pictorial representations, including those involving numbers, quantities and measures -Applying their increasing knowledge of mental and written methods -Recall and use subtraction facts to 20 fluently, and derive and use related facts up to 100 -Subtract numbers using concrete objects, pictorial representations, and mentally, including: a two-digit number and ones, a two-digit number and tens, two two-digit numbers, subtracting three one-digit numbers -Show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot -Recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems				
:---:	:---:	:---:	:---:	:---:	:---:
	Finding the difference (using cubes, Numicon or Cuisenaire rods, other objects can also be used). Calculate the difference between 8 and 5 .	Children to draw the cubes/other concrete objects which they have used or use the bar model to illustrate what they need to calculate	Find the difference between 8 and $5.8-5$, the difference is Children to explore why $9-6=8-5=7-4$ have the same difference Partitioning 74-27 $74-20=54$ $54-4=50$ $50-3=47$ $\begin{array}{r}51 \\ 65 \\ -\quad 28 \\ \hline 37 \\ \hline\end{array}$	Subtraction facts to at least 10	subtract, take away, how many are left/left over? how many have gone? one less, two less, ten less ... one hundred less, how many fewer is ... than ...? how much less is ...? difference between, equals is the same as, number
				bonds／pairs／fac ts，tens boundary	
:---:	:---:	:---:	:---:	:---:	
Year 3 $\square \square ー \square \square$ ロロローロロ $\square \square \square$－ㅁㅁ	Curriculum 2014 Statutory Requirements Pupils should be taught to： －Subtract numbers mentally，including：a three－digit number and ones，a three－digit number and tens，a three－digit number and hundreds a three－digit number and thousands －Subtract numbers with up to three digits，using formal written methods －Estimate the answer to a calculation and use inverse operations to check answers －Solve problems，including missing number problems，using number facts，place value，and more complex subtraction				
	Column strategy using base 10／place value counters$435-237=262$Hundreds Tens Ones 佥 $/ \mathrm{y}$ Hundreds Tens Ones ∞ mo \varnothing	Children to represent the base 10 pictorially． Number line－counting on for small differences $141-89=52$	Partitioning Subtraction facts to 20 $272-48$ Differences of $272-40=232$ multiples of 10 $232-8=224$ 3135 $\frac{-273}{262}$	All of the above ＋expanded column subtraction， exchanging	

Year 5 몸 - Decimals up to 2dp (72.545.7)	Curriculum 2014 Statutory Requirements Pupils should be taught to: -Subtract whole numbers with more than 4 digits, including using formal written methods (columnar subtraction) -Subtract numbers mentally with increasingly large numbers -Use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy -Solve subtraction multi-step problems in contexts, deciding which operations and methods to use and why				
	As previous year groups - using place value counters, Base 10, Numicon as necessary	As above	As above and compact strategy with decimal numbers as below $\begin{array}{r} 4.1 \\ 5.43 \\ -2.7 \\ \hline 2.73 \\ \hline \end{array}$	Use number facts for mental subtraction 9 - $\begin{aligned} & 2=70.9-0.2= \\ & 0.70 .09-0.02 \\ & =0.07 \end{aligned}$	All of the above + efficient written method
Year 6 Consolidate / extend Y5 including: Decimal to $3 d p$ relating to measures	Curriculum 2014 Statutory Requirements Pupils should be taught to: -Solve subtraction multi-step problems in contexts, deciding which operations and methods to use and why				
	As previous year groups - using place value counters, Base 10, Numicon as necessary	As above	As above Recognise when one written method is more efficient > There was 2.5 litres in the jug. Stuart drank 385 ml . How much was left? $>18.07 \mathrm{~km}-3.243 \mathrm{~km}$	As above	All of the above + Order of operations

MULTIPLICATION:

	CONCRETE	PICTORIAL	ABSTRACT	MENTAL RECALL	KEY VOCABULARY
Reception Count repeated groups of the same size (1s / $2 s / 5 s / 10 s)$	-Automatically recall (without reference to rhymes, counting or other aids) number bonds up to 5 (including subtraction facts) and some number bonds to 10 , including double facts -Verbally count beyond 20 , recognising the pattern of the counting system -Explore and represent patterns within numbers up to 10, including evens and odds, double facts and how quantities can be distributed equally				
	Pictures / Objects 3 plates, 2 cakes on each plate:	Symbols 3 plates, 2 cakes on each plate:	Repeated addition: $2+2+2=6$	Counting on in 1 s and 2 s	doubling, groups of, lots of
Year 1 Solve (practical) problems	-Solve one-step problems involving multiplication, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher				

	Pictures / Symbols There are three sweets in one bag. How many sweets are there in five bags? Repeated grouping/repeated addition 3×4 $4+4+4$ There are 3 equal groups, with 4 in each group.	Children to represent the practical resources in a picture and use a bar model. Number line (modelled using bead strings) 2×3 or 3×2 [two, three times] or [three groups of two]	$\begin{aligned} & 3 \times 4=12 \\ & 4+4+4=12 \end{aligned}$	Count on in 1s, $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s Doubles of numbers to 20	Multiplication, multiply, multiplied by, multiple, division, dividing, grouping, odd, even, count in twos, threes, fives, count in tens (forwards from/backward s from) How many times? lots of, groups of, once, twice, three times, five times, multiple of, times, multiply, multiply by
Year 2 Multiplication as repeated addition and arrays	-Recall and use multiplication facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers -Calculate mathematical statements for multiplication within the multiplication tables and write them using the multiplication (x) and equals (=) signs -Show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot -Solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts				

Year 4 Record, support and explain: $\square \square X$ ㅁㅁ $\boldsymbol{X} \square$	-Recall and use multiplication facts for multiplication tables up to 12×12 -Use place value, known and derived facts to multiply mentally, including: $x 0 \times 1$ and multiplying together three numbers -Recognise and use factor pairs and commutativity in mental calculations -Multiply two-digit and three-digit numbers by a one-digit number using formal written layout -Solve problems involving multiplying, including the distributive law to multiply two-digit numbers by one digit including positive number scaling problems and correspondence problems where n objects are connected to m objects					
	Hundreds Tens Ones ∞ 0 0 1 1 ∞ 1 1 1 1 ∞ 1 1 1 1 ∞ 1 1 1 1 1 1 1 1 (\quad (-) .	Children to represent the concrete manipulatives pictorially	Expanded vertical$\begin{array}{r} \begin{array}{r} 43 \\ \times \quad 6 \\ \hline 18 \\ 240 \\ \hline 258 \end{array}(30 \times 6) \end{array}$ H T O 2 4 5 \times 4 9 8 0 1 2	method Compact vertical $\begin{array}{r} 43 \\ \times \quad 6 \\ \hline 258 \\ \hline 1 \end{array}$	Derive / recall facts to 12×12 Multiples of numbers to 12 up to the 12th multiple	All of the above multiple, factor, multiplication facts (up to 12×12) inverse, derive

DIVISION:

Year 1 Solve (practical) problems that involve sharing into equal groups	Curriculum 2014 Statutory Requirements Pupils should be taught to: -Solve one-step problems involving division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher				
	Sharing using a range of objects. $6+2$	Represent the sharing pictorially.	$6+2=3$ 3 Children sho their 2 times	3 encouraged to use	division, dividing, grouping, sharing, halving, array, number patterns
Year 2 Division as sharing and grouping (including remainders)	Curriculum 2014 Statutory Requirements Pupils should be taught to: -Recall and use multiplication and division facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers -Calculate mathematical statements for division within the multiplication tables and write them using the signs \div and $=$ -Show that multiplication of two numbers is commutative but division is not -Solve problems involving division using materials, arrays, repeated addition, mental methods and division facts, including problems in contexts				

(where divisor
is 2,5 or 10)

depending on the context	2d + 1d with remainders using lollipop sticks. Cuisenaire rods, above a ruler can also be used. $13+4$ Use of lollipop sticks to form wholes- squares are made because we are dividing by 4 . \square There are 3 whole squares, with 1 left over.	Children to represent the lollipop sticks pictorially. Number lines (start from zero) $33 \div 5=6 \mathrm{r} 3$ Partitioning (multiples of the divisor) $10+3=13$	$13+4-3$ remainder 1 Children should be encouraged to use their times table facts; they could also represent repeated addition on a number line. ' 3 groups of 4 , with 1 left over' Partitioning (multiples of the divisor) $\begin{align*} 50 \div 4 & =12 r 2 \\ 10 \times 4 & =40 \\ 2 \times 4 & =8 \tag{48} \end{align*}$	Derive / recall :facts for 2, 3, 4, $5,6,8$ and 10 tables	All of the above remainder, row, column, division facts
Year 4 Record, support and explain:	Curriculum 2014 Statutory Require Pupils should be taught to: -recall multiplication and division fa -solve problems involving dividing a	ments cts up to 12×12 use place value, k three-digit number by one-digit and	n and derived facts to divide umber using a formal layout	ntally, including	iding by 1

Year 5 Refine and use efficient methods: 믄 몸ㅁ ㅁ	Curriculum 2014 Statutory Require Pupils should be taught to: -Identify multiples and factors, incl of prime numbers and establish wh -Multiply and divide numbers men -Divide numbers up to 4 digits by a -Divide whole numbers and those in	ments ding finding all factor pairs of a num ther a number up to 100 is prime lly drawing on known facts ne-digit number using a written me volving decimals by 10, 100 and 100	hod and		et	of ma	o n ders	rs, know and use ropriately for the	the vocabulary context
	Sharing using concrete resources as above with 3 digit numbers and below with 4 digit numbers	Represent place value counters pictorially as above with 3 digit numbers and below with 4 digit numbers a	Short 2	isi	2 5	6 13	6 12	Recall quickly : facts up to 12 times table	All of the above square, squared, cube, cubed, factor pairs, composite numbers, prime number, prime factors

